.PAR Simulation Parameters

The PAR format in the Flux Simulator is used to administrate all parameters of a run. It is a simple format containing key value pairs (one per line) with the following parameter names (i.e., keys):

File Locations

Key	Туре	Default Value	Description
REF_FILE_ NAME	String		Path to the GTF reference annotation, either absolute or relative to the location of the parameter file
PRO_FILE _NAME	String	{REF_FILE_NA ME}.PRO	Path to the profile of the run, either absolute or relative to the location of the parameter file; the default profile uses the name of the parameter file with the extension .pro.
LIB_FILE_ NAME	String	{REF_FILE_NA ME}.LIB	Path to the library file of the run, either absolute or relative to the location of the parameter file; the default profile uses the name of the parameter file with the extension .lib.
SEQ_FILE _NAME	String	{REF_FILE_NA ME}.BED	Path to the sequencing file of the run, either absolute or relative to the location of the parameter file; the default profile uses the name of the parameter file with the extension .bed.
GEN_DIR	String		Path to the directory with the genomic sequences, i.e., one fasta file per chromosome/scaffold/contig with a file name corresponding to the identifiers of the first column in the GTF annotation.
TMP_DIR	String	\$TMP_DIR	Temporary directory, can also be specified by the environment variable \$TMP_DIR.

Expression

Key	Туре	Default Value	Description
LOAD_CODING	Boolean	YES	Coding messengers, i.e., transcripts that have an annotated CDS, are extracted from the cell.
LOAD_NONCODING	Boolean	YES	Non-coding RNAs, i.e., transcripts without an annotated ORF are extracted from the cell.
NB_MOLECULES	Long	5,000,000	Number of RNA molecules initially in the experiment.
EXPRESSION_K	Double	(-0.6)	Exponent of power-law underlying the expression profile [-1;0]
EXPRESSION_X0	Double	9,500	Linear parameter of the exponential decay.
EXPRESSION_X1	Double	90,250,000	Quadratic parameter of the exponential decay.

Transcript Modifications

Key	Туре	Default Value	Description
TSS_MEAN	Double	25	rate of the exponential for deviation of simulated transcription starts from annotated transcription start point, set to NaN (i.e., "not a number") to deactivate simulated transcription start variability
POLYA_S CALE	Double	300	scale parameter of the Weibull distribution describing poly-A tail lengths, set to NaN (i.e., "not a number") to deactivate simulated poly-A tails
POLYA_S HAPE	Double	2	shape paramter of the Weibull distribution describing poly-A tail lengths, set to NaN (i.e., "not a number") to deactivate simulated poly-A tails

Library prepeparation

Fragmentation

Key	Туре	Default Value	Description
FRAGMENTATI ON	Boolean	YES	Turn fragmentation on/off.
FRAG_SUBSTR ATE	{DNA, RNA}	RNA* *DNA in Simulator v1.2 and earlier	Substrate of fragmentation, determines the order of fragmentation and reverse transcription (RT): for substrate DNA, fragmentation is carried out after RT, substrate RNA triggers fragmentation before RT.

FRAG_METHOD	{EZ,NB, UR}	UR	Fragmentation method employed:		
			* [EZ] Fragmentation by enzymatic digestion		
			* [NB] Fragmentation by nebulization		
			* [UR] Uniformal random fragmentation		
Enzymatic Digest	ion				
FRAG_EZ_MOTIF	String		Sequence motif caused by selective restriction with an enzyme, choose pre-defined NIaIII, DpnII, or a file with a custom position weight matrix.		
Nebulization					
FRAG_NB_LAM BDA	Double	900.0	Threshold on molecule length that cannot be broken by the shearfield of nebulization.		
FRAG_NB_THO LD	Double	0.1	Threshold on the fraction of the molecule population; if less molecules break per time unit, convergence to steady state is assumed.		
FRAG_NB_M	Double	1.0	Strength of the nebulization shearfield (i.e., rotor speed).		
Uniformal Randon	m (UR) Frag	mentation			
FRAG_UR_ETA	Double	NaN	Average expected framgent size after fragmentations, i.e., number of breaks per unit length (exhautiveness of fragmentation);		
			NaN optimizes the fragmentation process w.r.t. the size filtering		
FRAG_UR_DEL	Double	NaN	Geometry of molecules in the UR process:		
			* NaN= depends logarithmically on molecule length,		
			* 1= always linear,		
			* 2= always surface-diameter,		
			* 3= volume-diameter,		
FRAG_UR_D0	Double	1.0	Minimum length of fragments produced by UR fragmentation.		

Reverse Transcription (RT)

Key	Туре	Default Value	Description
RTRANSCRIPTION	Boolean	YES	Switch on/off Reverse Transcription.
RT_PRIMER	{RH,PDT}	RH	Primers used for first strand synthesis: * [RH] for random hexamers or * [PDT] for poly-dT primers
RT_MIN	Integer	500	Minimum fragment length observed after reverse transcription of full-length transcripts.
RT_MAX	Integer	5,500	Maximum fragment length observed after reverse transcription of full-length transcripts.

Filtering

Key	Туре	Default Value	Description	
FILTE RING	Boolean	NO	Switches size selection on/off.	
SIZE_ DISTR IBUTI ON	String	default	Size distribution of fragments after filtering, either specified by the fully qualified path of a file with an empirical distribution where each line represents the length of a read (no ordering required), or attributes of a gaussian distribution (mean and standard deviation) in the Unknown macro: 'latex-inline', for example Unknown macro: 'latex-inline'. If no size distribution is provided, an empirical Illumina fragment size distribution is employed.	

Amplification

Key	Туре	Default Value	Description
PCR_DISTRIBUTION	String	default	PCR distribution file, 'default' to use a distribution with 15 rounds and 20 bins, 'none' to disable amplification.
PCR_PROBABILITY	Float	0.1	PCR duplication probability when GC filtering is disabled by setting GC_MEAN to NaN.
GC_MEAN	Float	0.5	Mean value of a gaussian distribution that reflects GC bias amplification probability, set this to 'NaN' to disable GC biases.

GC_SD	Float	0.1	Standard deviation of a gaussian distribution that reflects GC bias amplification probability, inactive if GC_MEAN is set to NaN.
-------	-------	-----	---

Sequencing

Key	Туре	Default Value	Description
READ _NUM BER	Integer	5,000,000	Number of reads.
READ _LENG TH	Integer	36	Length of the reads.
PAIRE D_END	Boolean	NO	Switch on/off paired-end reads.
FASTA	Boolean	NO	Creates .fasta/.fastq output. Requires the genome sequences in a folder specified by GEN_DIR. If a quality model is provided by parameter ERR_FILE, a .fastq file is produced. Otherwise read sequences are given as .fasta.
ERR_F ILE	String		Path to the file with the error model. With the values '35' or '76', default error models are provided for the corresponding read lengths, otherwise the path to a custom error model file is expected.
UNIQU E_IDS	Boolean	NO	Create unique read identifiers for paired reads. Information about the relative orientation is left out of the read id and encoded in the pairing information. All /1 reads are sense reads, all /2 reads are anti-sense reads. This option is useful if you want to identify paired reads based on the read ids.